
1 

Analytical and Experimental Study of a Metamaterial Beam with 

Grading Piezoelectric Transducers for Vibration Attenuation Band 

Widening 

Yupei Jian1, Guobiao Hu2, Lihua Tang1*, Wei Tang3, Moein Abdi1, Kean C Aw1 

1 Department of Mechanical and Mechatronics Engineering, The University of Auckland, 

Auckland 1010, New Zealand 

2 School of Civil and Environmental Engineering, Nanyang Technological University, 

Singapore 639798, Singapore 

3 School of Automation, Northwestern Polytechnical University, Xi’an 710072, P.R. China 

* corresponding author: l.tang@auckland.ac.nz 

Abstract 

This paper analytically and experimentally investigates the potential of a piezoelectric 

metamaterial beam with a spatial grading pattern for broadband vibration attenuation. Distributed 

bimorph piezoelectrics with varying lengths form the “graded” manner. A fully coupled analytical 

model based on the transfer matrix function is developed to exhibit the vibration attenuation 

capabilities. The band structure of the graded supercell structure and the transmittance response 

of the finite-length counterpart show that the bandwidth of the vibration attenuation zone can be 

significantly broadened by the spatial variation of the piezoelectric transducers, while multiple 

resonant-related passbands/peaks occur. By properly introducing electrical damping (e.g., 200 Ω), 

the resonant peaks can be significantly attenuated. Subsequently, for the first time, we 

experimentally confirmed the broadband vibration attenuation performance of the graded 

piezoelectric metamaterial. The harmonic excitation test demonstrates that the enlarged 

attenuation region can be achieved: with the spatial variation of 1 millimetre, the attenuation 

bandwidth can be increased up to 80% as compared to conventional metamaterial with identical 

piezoelectric patches. Furthermore, the white noise excitation test verifies the broadband 

mailto:l.tang@auckland.ac.nz


2 

attenuation capabilities. The results show that the root-mean-square (RMS) acceleration of the 

graded metamaterial beam is remarkably reduced as compared to that of the conventional one. 

Keywords: Metamaterial; Bandgap; Grading piezoelectric transducers; Broadband vibration 

attenuation. 

1. Introduction 

The engineered composite structure containing periodic arrays of local resonators, or a popular 

term, locally resonant (LR) metamaterials, are regarded as one of the state-of-the-art technologies 

used to manipulate waves through bandgaps. One main motivation for developing this type of 

artificial structures derives from the increasing demand for vibration mitigation in the modern 

aerospace, automotive and transportation industries. The miniature, lightweight, and high-

precision devices used intensively in these fields are more susceptible to damage from 

environmental vibrations [1], requiring new vibration suppression approaches. In this context, 

LR metamaterial, which can attenuate sub-wavelength waves, has unscreened new routes for low-

frequency vibration control in a relatively small structure [2]. 

To make the metamaterial adaptive to different working conditions, researchers have reported 

various metamaterial-based structures with reconfigurable or adjustable abilities, including 

magnetorheological elastomer isolator-based metamaterials [3, 4], bistable/multistable 

metamaterials [5-7], thermally tuning-based metamaterials [8-10], and origami type 

metamaterials [11-13], to name a few. Among them, piezoelectric metamaterial implemented by 

integrating shunted piezoelectric elements into structures has received wide attention. 

Analogously to mechanical oscillators, the antiresonance induced by the resonant shunts can open 

the LR bandgap, which can be tuned by modifying the circuitry configuration. In contrast to some 
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mechanical metamaterials whose vibration attenuation ability depends on the ratio of the added-

on mass to the host structure [14], the vibration energy in the piezoelectric metamaterial is 

dissipated by shunt circuits and therefore avoids the significant additional mass [15].  

The crucial parts of the piezoelectric metamaterial, i.e., the shunt resonant circuits, are usually 

implemented by analogy electronic components. To overcome the limitation in terms of physical 

size and impedance value of passive components such as inductors, operational amplifier-based 

synthetic circuits are widely adopted to emulate the behavior of real inductance [16, 17]. 

Furthermore, owing to the well-established control techniques, digital resonant circuits that 

combine analogy circuits and microcontrollers, show the potential for designing programmable 

shunt circuits [18, 19]. Transfer functions written in the microcontroller units determine the 

relationship of the current and voltage of the piezoelectric transducer and form an equivalent 

electrical impedance [20]. In addition, the piezoelectric metamaterial’s vibration mitigation 

property highly relies on the electromechanical coupling effect [21], and the bandgap induced by 

simple resonant shunts is normally narrow. To this end, advanced shunt circuits are proposed to 

broaden the bandgap width and enhance the bandgap attenuation intensity, including negative 

capacitance circuits [22, 23], nonlinear shunt circuits [24, 25], switching shunt circuits [26, 27], 

and adaptive shunt circuits [28].  

The aforementioned studies mainly considered local resonators with periodic geometric and 

dynamic properties. More recently, with a special focus on bandgap widening and wave 

manipulation, metamaterials with a certain degree of aperiodicity have become a topic of interest. 

The design guidelines can basically be classified into disordered design and graded design, both 

of which provide an additional tolerance for manufacturing. Concerning the first design, Fabro et 
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al. [29] investigated the wave propagation in the beam-type metamaterial with randomly varying 

properties and concluded that the uncertainties in the system might either contribute to the 

enhancement of bandgap, or prevent its formation. Pan et al. [30] evaluated the uncertainties in a 

piezoelectric metamaterial, showing that the bandgap behavior is sensitive to circuitry parameter 

uncertainty. Additionally, instead of random disorder, researchers were dedicated to employing 

optimization algorithms to handle the arbitrary system parameters to seek optimal vibration 

attenuation performance [31-33]. The Anderson localization phenomenon was also observed in 

the disordered metamaterial systems [34, 35], showing potential in signal filtering [36] and 

waveguiding applications [37]. Regarding the graded design (i.e., geometric/material properties 

of the periodic unit cell are gradually vary based on deterministic functions), Hu et al. [38] used 

a fixed value to constrain the frequency spacing of the natural frequencies of the mass-spring type 

resonators, aiming at broadening the attenuation zones. With the same concept, Alshaqaq et al. 

[39] proposed a piezoelectric metamaterial shunted to resonant circuits with grading circuity 

configuration. In that study, except for a wider attenuation zone, a rainbow trapping phenomenon 

occurs, which benefited broadband energy harvesting since the vibrational energy related to 

different frequency wave components was separately localized to different positions. Later on, 

the idea of grading circuity parameters was applied to negative capacitance shunts to further 

enlarge the attenuation zone [40]. Recently, instead of grading circuit parameters, we investigated 

a graded metamaterial with spatially varying electrodes [41]. Gradually changing the electrical 

properties of the piezoelectric cells seperated by electrodes brings the potential to expand the 

attenuation zone. However, there are still some gaps in the field of graded piezoelectric 

metamaterials. First, previous studies have demonstrated the broadband attenuation properties of 

graded metamaterials via the transmittances of finite length models, but few have studied their 
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bandgap behaviors in band structures. Second, the research was still at the conceptual stage. In 

particular, the sandwich structure based on a full-coverage piezoelectric transducer in [39, 41] 

makes the experimental validation challenging due to the following difficulties: (1) ensuring 

insulation of adjacent units is not easy, and (2) a single piezoelectric patch cannot be fabricated 

too long to avoid high fragility.  

In this work, we continue to explore the idea of varying piezoelectric transducers in our previous 

study [41]. Unlike the idealized model in [41], we consider a more practical one, i.e., a 

metamaterial beam partially covered by piezoelectric transducers and configured in a grading 

pattern. This configuration makes experimental validation possible. Moreover,  in addition to the 

transmittance analysis for finitely-long structures presented in [41], a graded supercell analysis 

based on the transfer matrix method is developed to capture the bandgap behavior. 

Comprehensive analytical and experimental investigations are performed to show the benefits of 

introducing a certain degree of length variation in the piezoelectric transducers.  

This work is organized as follows. The electromechanical equations governing the graded 

metamaterial system and the theoretical bandgap bounds are derived in Section 2. To directly 

show the superior bandgap behavior, a graded supercell structure is developed in Section 2, and 

the band structure is validated by the finite element model in Section 3. The effect of the spatial 

variation level of the piezoelectric transducers’ size is then investigated in Section 3. Section 4 

presents an experimental study considering different types of excitation sources to confirm the 

benefits of the graded design in terms of attenuation band widening as compared to the traditional 

piezoelectric metamaterial. Concluding remarks of this work are summarized in Section 5. 
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2. Theoretical Foundation 

2.1 System Overview 

 

 

Figure 1. Design of the graded piezo-meta-beam: (a) Finitely long metamaterial beam bonded 

with piezoelectric transducers of grading lengths; (b) Illustration of a unit cell; (c) Shunt circuit 

connected to a unit cell. 

Figure 1(a) shows the schematic of the graded piezoelectric metamaterial beam (for short, graded 

piezo-meta-beam) bonded with 2n+1 pairs of piezoelectric transducers made of lead zirconate 

titanate (PZT) with different lengths in a grading pattern. The left end of the beam is clamped and 

subject to base excitation. The poling directions of a pair of piezoelectric transducers and the 

connection of their electrodes to the external shunt circuit are shown in Figure 1(b) and (c). In 

this work, a resistor–inductor (R-L) circuit is considered. The beam with a total length lb is divided 

into 2n+1 segments (unit cells) of lengths lj, j = 1, 2, …, 2n+1 in the x-direction with one 

piezoelectric transducer bonded on each beam segment. The geometrical and material properties 

of the jth unit cell are shown in the enlarged view (Figure 1(b)). The portions without and with 

the coverage of PZT transducer in the jth beam segment are marked as (j, α) and (j, β), with the 

lengths lnp and lp,j, respectively, where lj = lp,j + lnp. Note that lnp is constant in each beam segment, 
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while lp,j varies along the x-direction. The strict periodicity of the metamaterial, which is generally 

regarded as the condition for bandgap formation, is broken by the grading PZT patches with a 

constant spatial variation between the neighboring beam segments defined as: 

 
( )( )

1

1

j nl l

j n


+−
=

− +
 (1) 

where ln+1 = lb/(2n+1) is the length of the beam segment in the middle. The geometric and material 

properties for the graded piezo-meta-beam are listed in Table 1. Note that the length of each PZT 

patch depends on how many segments the beam is divided into and the length of the fixed length 

lnp, which will be given later.  

Table 1. Geometric and material properties of piezoelectric metamaterial beam 

Host beam PZT patch 

Material Aluminum Material PZT-5H 

Thickness hb 1 mm Thickness hp 1 mm 

Width b 30 mm Width b 30 mm 

Length lb 405 mm Length lp,j Varying  

Density ρb 2700 kg/m3 Density ρp 7500 kg/m3 

Young’s modulus Eb 69 GPa 
Young’s modulus in short-

circuit condition 
sc

pE  
60.6 GPa 

 Piezoelectric coefficient e31 -16.61 C/m2 

 Permittivity 33

S  2.5554e-08 F/m 

By adopting the slender beam assumption, the shear deformation and the rotatory inertia of the 

cross-section are neglected. Based on the Euler-Bernoulli beam theory, the governing equation of 

the transverse motion w(x, t) of the beam is obtained: 

 ( )
( )

( )
( )2 22

2 2 2

, ,
0

w x t w x t
D x m x

x x t

  
+ = 

   
 (2) 

where D(x) and m(x), respectively, denote the bending stiffness and the mass per unit area of the 

beam. Assuming that the PZT patches are perfectly bonded to the host beam, the bending stiffness 
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of the jth beam segment can be calculated as 
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where Eb and Ep,j are, respectively, the Young’s modulus of the host beam and the effective 

Young’s modulus of the jth PZT transducer with shunt circuit. Ep,j can be further expressed as [42]  

 ( )
( )
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where ( )2

31/ 1oc sc

p pE E k= −   stands for the Young’s modulus of the PZT patch under the open-

circuit condition, and 
sc

pE  is the value under the short-circuit condition. k31 is the 

electromechanical coupling coefficient. 
,

, 33
2

p jS

p j

p

l
C b

h
=  is the internal capacitance of the PZT 

patch at the constant strain. It is a function of the PZT patch length lp,j. ( )Z L Ri = +  is the 

electrical impedance of the R-L circuit. Similar to the bending stiffness, the effective mass per 

unit length of the beam also varies, depending on whether there is a PZT coverage or not.  

 ( )
,  0

2 ,  
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b b p p np j

m bh x l
m x

m bh bh l x l







 
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= 
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 (5) 

where ρb and ρp are the masses per unit length of the host beam and the PZT patch, respectively. 

2.2 Attenuation Zone Estimation 

The bandgap range of a uniform piezo-meta-beam is determined first to provide guidelines for 

estimating the attenuation zone of the graded piezo-meta-beam. It is known that bandgap behavior 

of piezoelectric metamaterials is affected by their bending stiffness properties [43]. From the 



9 

formulation of the potential energy stored in the segments with and without PZT coverage [44], 

one can extract the effective bending stiffness of the jth unit cell: 
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where 
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 +
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 denotes the coverage ratio of the PZT patch on the jth 

unit cell. For the graded piezo-meta-beam, j  and Dj,β take different values for different beam 

segments, leading to different Deff. This implies that the intentionally introduced variation of the 

PZT length modifies the effective bending stiffness of the composite beam along the x-direction, 

i.e., the length direction. According to the conclusions in [21], the bandgap is generated when Deff 

becomes negative. Letting Deff, j < 0 and solving it, one can derive the analytical bandgap of a 

uniform piezo-meta-beam composed of identical beam segments with the same configuration as 

the jth beam segment of the graded piezo-meta-beam: 

 
( )

2 2

31 31
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1 1 / 1
LC j LC j

j

k k
  

  
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where ,

sc

j pD D =  and ( )
3

32 12sc sc

b p bp p b h hE hD  + −
  

=  is the bending stiffness of the 

piezoelectric transducer under the short-circuit condition (i.e., R = 0). 
, ,1LC j p jLC =  is the 

resonance frequency of the L-C circuit formed by the internal capacitor of the PZT patch and the 

shunted inductor. Based on Eq. (7), Figure 2 shows the variation of the normalized bandgap 

region with different piezoelectric coverage ratios  . The other parameters of the system are 

listed in Table 1. It can be seen that the upper bound of the bandgap decreases rapidly with the 

decrease of the coverage ratio  , while the lower bound remains constant.  

Additionally, it is also noticed that when 1 → , the upper bound of the bandgap approaches the 
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resonant frequency ωLC, j of the shunted PZT (i.e., ω/ωLC, j = 1), which can also be mathematically 

proved by taking the limit of the upper bound in Eq. (7): 
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In this way, Eq. (7) is reduced to the bandgap expression derived in [45] for the sandwich-type 

metamaterial with fully covered piezoelectric layers.  

 

Figure 2. Variation of the normalized bandgap bounds with the change of the piezoelectric 

coverage ratio  . 

For the “graded” design, the grading manner is achieved by defining a constant spatial variation 

δ, which makes the effective bending stiffness of the beam segment vary progressively. Therefore, 

it can be speculated that the bending stiffnesses of the unit cells spatially distributed along the 

beam will become negative in different frequency ranges, resulting in an array of discrete 

attenuation zones. To facilitate the analysis, we rewrite Cp,j in terms of the capacitance of the PZT 

in the middle, i.e., Cp,n+1:  

 ( )( ), , 1 , 11 / 1p j p n p nC j n l C + +
 = − − + 

 (9) 
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Combining with Eq. (9), ,LC j  can be re-expressed in terms of , 1LC n +   

 
( )( )

, , 1

, 1

1

1 / 1
LC j LC n
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
+

+

=
− − +
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From Eq. (10), it can be found that when δ > 0, namely, the PZT length gradually increases along 

the x-direction, the resonant frequency array , , 1,2,...,2 1LC j j n = +   is arranged in 

descending order (i.e., ,1 ,2 , 1 ,2 1... ...LC LC LC n LC n   + +      ). Consequently, a series of 

attenuation regions related to these resonance frequencies will be produced in descending order 

in the frequency spectrum. When δ < 0, namely, the PZT length shrinks along the x-direction, the 

above trend is opposite. In these two cases, , 1LC n +   is always at the center of the resonant 

frequency array. By combining with Eq. (7), the overall attenuation zone of the graded piezo-

meta-beam can be predicted by Eq. (11) and will be verified later in Section 3.1. Due to the 

geometric symmetry, the estimated attenuation zone boundary related to δ < 0 is numerically 

equal to that of δ > 0. 
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(11) 

2.3 Analytical Solution 

To quantify the effect of the grading PZT patches on the wave propagation in the metamaterial 

beam, the transfer matrix method is employed to calculate the dynamic response and dispersion 

relation of the graded piezo-meta-beam. By assuming the steady-state response as w(x, t) = 

W(x)eiωt , the general solution to Eq. (2) in the jth beam segment can be written in the form of  

 ( ), , ,  for ,j j jW x     = =H Ψ  (12) 
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where ( ) ( ) ( ) ( ), , , , ,cos ,sin ,cosh ,sinhj j j j jk x k x k x k x    
 =
 

H , with 
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and 
T

, , , , ,, , ,j j j j jA B C D    
 =  Ψ  is the coefficient vector to be determined. Considering the 

continuity boundary conditions of the displacement, rotation angle, bending moment, and shear 

force at the interface between beam segments (j, α) and (j, β), one can obtain 
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Similarly, at the interface between segments (j, β) and (j+1, α), the continuity conditions are  
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where ( )( ) ( ), 1 / 2 1p j b npl j n l n l= − + + + −  . Substituting Eq. (12) into Eqs. (14) and (15), 

respectively, then rewriting them into matrix form, one can obtain the transfer relationship 

between the jth and (j+1)th unit cells as 

 
1, ,j j j + =Ψ TΨ  (16) 

with the transfer matrix being: 

 ( ) ( ) ( )
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in which  
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(18) 

For the graded piezo-meta-beam with 2n+1 unit cells, the transfer relationship between the left 

end of the 1st segment and the right end of the (2n+1)th segment can be obtained by repeating 

the above procedure: 
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To calculate the vibration transmissivity from the left end of the graded piezo-meta-beam to the 

right end, a unit harmonic displacement u0(t) = eiωt is applied at the left end as the excitation. The 

clamped-free boundary condition of the beam yields   
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Combining Eqs. (12), (19) and (20) yields 
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where 
, 1, :( )j xH  denotes the 1st row of 

, ( )j xH  and I is the 4×4 identity matrix. By solving Eq. 

(21), i.e., an 8×8 matrix, one can obtain the coefficient matrix 
2 +1,n Ψ . The transmittance of the 

piezo-meta-beam can be calculated as  
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 ( ) ( )10 2 1, ,2 1
ˆ20log       (dB)n p nW l  + +=  (22) 

where ( )2 1, ,2 1 2 +1, ,2 1 2 +1,1, :

ˆ ( )n p n n p n nW l l  + + += H Ψ  denotes the normalized displacement at the right 

end of the beam. 

To capture the bandgap behavior, dispersion relation analysis of an infinite period structure is 

usually a powerful method. However, the PZT patch length variation breaks the periodicity, 

resulting in the dispersion relation described by the Floquet-Bloch theorem no longer existing. 

Therefore, a supercell graded metamaterial structure is proposed by taking the (2n+1) cells as a 

superlattice cell. The Bloch boundary condition can then be applied to the supercell: 

 
2 +2, 1,

iqd

n e =Ψ Ψ  (23) 

where q* = qd/π is the wave propagation constant (dimensionless). Note that q* is normally a 

complex value. The real part of q*, i.e., RE(q*), is the wavenumber, and the imaginary part of q*, 

i.e., IM(q*), represents the attenuation factor, which indicates the attenuation strength. d = lb is 

the lattice constant of the superlattice cell. To satisfy Eqs. (16) and (23) simultaneously, an 

eigenvalue problem is raised: 
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3. Band Structure and Transmittance Analysis 

3.1 Band Structure Behavior 

In this section, we comprehensively investigate the bandgap behavior of the piezo-meta-beam 

with grading piezoelectric transducers. First, the supercell band structure analysis is conducted. 

An undamped supercell consisting of 9 (i.e., n = 4) segments with spatially varying bimorph PZT 
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patches (hereinafter referred to as the graded supercell for short) is considered. The length of the 

beam segment in the middle is set to be ln+1 = 45 mm, and the lattice constant of the supercell is 

d = (2n+1)×ln+1 = 405 mm. A small gap (lnp  = 5 mm) between the neighboring PZT patches is set 

to ensure a large piezoelectric coverage ratio. It implies that the length of the PZT in the middle 

is lp,n+1 = ln+1 – lnp = 40 mm. The spatial variation is set to be δ = 2 mm. The inductor has a value 

of L = 6.6 H. Thus, the LC circuit resonance frequency of the middle piezoelectric element is  

fLC, n+1 = 500 Hz. The other material and geometrical parameters are listed in Table 1. For the 

same given parameters, a finite element model is also established using COMSOL Multiphysics 

for comparison and verification. It is worth mentioning that to match the assumption we made in 

developing the theoretical model, the three-dimensional material tensor of the piezoelectric 

material in COMSOL is modified to ensure that PZT transducers only operate in the 31-mode, as 

given below: 

 
6 6 33

31

= ,    = ,    0,0,sc S

pE
e



 
 =   

 

S

E

0 0
C I e ε

0
 (25) 

where CE, e and εS, are, respectively, the elastic matrix, the coupling matrix and the permittivity 

vector. 31 31

sc

pe d E=  is the piezoelectric coefficient in the 31-mode. Figure 3(c) shows the band 

structure of the undamped graded supercell. The band structures of the supercell containing 9 

uniform segments (uniform supercell, for short) (Figure 3(b)) and an ordinary unit-cell (Figure 

3(a)) are also provided for comparison. The beam segment lengths of the two uniform models are 

chosen to be the same as that of the middle segment of the grading design, i.e., ln+1. Hence, the 

lattice constants of the two uniform models are d and ln+1, respectively, implying that the 

wavenumber for the ordinary unit-cell is q* = qln+1/π. Figure 3 compares the results from the 



16 

theoretical models and the finite element simulation. Black and red dots denote theoretical and 

FE results, respectively. Blue- and green-shaded areas denote LR and Bragg bandgaps, 

respectively. It is shown that the two results are highly consistent with each other. 

 

Figure 3.Band structure of the (a) unit-cell structure; (b) uniform supercell structure; (c) graded 

supercell structure configured with δ = 2 mm. Black and red dots denote the theoretical and FE 

results, respectively. The blue-shaded areas denote the LR bandgaps, and the green-shaded areas 

are the Bragg bandgaps. To clearly show the discrete bandgaps, the LR bandgap region of (c) is 

further enlarged, as shown in (d). 

The color shaded areas represent bandgaps, i.e., the frequency ranges where no pure real 

wavenumbers exist. Since the supercell contains multiple sub-cells and due to the band folding 

effect in the reduced supercell Brillouin zone [46], the number of the dispersion curves of the 

uniform supercell (Figure 3(b)) is more than that of the unit-cell (Figure 3(a)), but this band 

folding effect does not affect the width of LR bandgap, i.e., the region induced by the circuit 

resonance shaded in blue. In comparison, it can be noted that multiple LR bandgaps are produced 
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in the band structure of the graded supercell (Figure 3(c)), spreading over higher and lower 

frequency ranges. As discussed in Section 2.2, these discrete bandgaps are induced by the 

negative bending stiffness segments distributed along the beam in the “grading” pattern. The 

width of the discrete bandgaps sums up to 70.5 Hz, which is about 7 times that of the uniform 

counterpart, i.e., 10.2 Hz. Moreover, due to the band folding effect and the aperiodicity caused 

by the “graded” design, two Bragg bandgaps emerge at the folding points of the band structure. 

This phenomenon agrees well with the reported results of aperiodic metastructures [47]. In 

addition, multiple flat passbands appear between the neighboring LR bandgaps, as shown in 

Figure 3(c) and the enlarged view in Figure 3(d). Waves within the passbands can propagate 

through the beam. Thus, the appearance of passbands is detrimental to broadband vibration 

attenuation.  

To get more insights into the vibration attenuation capacity of the graded piezo-meta-beam, we 

plot the transmittance heatmap for a finitely long model of the graded piezo-meta-beam versus 

the excitation frequency and the beam location in Figure 4(a). This finitely long model is 

obtained by replacing the Floquet-Bloch boundary condition applied to the two ends of the 

supercell with the clamped-free boundary condition. The transmittance heatmap for the uniform 

counterpart piezo-meta-beam is also plotted in Figure 4(b) for comparison. 



18 

 

 

Figure 4. Transmittance heatmaps associated with the beam length and frequency of (a) finitely 

long graded piezo-meta-beam and (b) finitely long uniform piezo-meta-beam; Vibration modes 

at selected frequencies marked as A, B,…,G of (c) finitely long graded piezo-meta-beam and 

(d) finitely long uniform piezo-meta-beam. It is noted that the spatial-frequency selection 

property is observed inside the triangular dashed box in (c), while it is not obvious in the 

rectangular dashed box in (d). 

Similar to the band structure analysis result, Figure 4(a) shows that the vibration attenuation 

region of the graded piezo-meta-beam occurs in a wider but discontinuous frequency range as 

compared to that of the uniform one (Figure 4(b)). Vibration modes of the uniform and graded 

piezo-meta-beams at the marked frequencies A, B,…, G within the attenuation regions are 

respectively plotted in Figure 4(c) and (d). It is revealed in Figure 4(c) that the wave propagation 

in the graded piezo-meta-beam exhibits a spatial-frequency selection property. Specifically, as 
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indicated in the triangular dashed box in Figure 4(c), the vibration energy becomes more 

concentrated at the clamped end of the metamaterial beam as the excitation frequency increases. 

This phenomenon is also referred to as “rainbow trapping” [48, 49]. In contrast, the wave trapping 

phenomenon did not occur in the uniform piezo-meta-beam, and the vibration is evenly attenuated 

along the wave propagation direction. It is worth noting that the attenuation region identified in 

Figure 4(a) cannot perfectly match the discrete LR bandgaps shown in Figure 3(c), since the 

finitely long model (the standing wave system) is actually different from the infinitely long model 

(traveling wave system), and we consider only a single supercell [50]. Increasing the number of 

supercells will make the transmittance profile better match the band structure result. 

The above analysis is conducted in the absence of damping. In practice, electrical damping 

induced by the parasitic resistance of the shunt circuit is unavoidable, which will be demonstrated 

in the experiments later. We considered the existence of a resistor of R = 200 Ω to investigate the 

electrical damping effect on vibration attenuation. Figure 5(a) presents the dimensionless 

wavenumber: RE(q*). It is the same as Figure 4(a), indicating that resistors do not affect the 

locations of bandgaps. The imaginary part of the wave propagation constant, i.e., the attenuation 

factor, is plotted in Figure 5(b). Interestingly, one can observe that due to the resistance-induced 

damping, the attenuation factors are non-zero in the flat passband regions, leading to a board 

continuous attenuation zone. It should be noted that pure real/imaginary q* does not exist for 

damped periodic structures. The calculated imaginary values are extracted from the complex 

wave propagation constant, representing the evanescent waves. Consequently, the vibration 

amplitude in this scenario is suppressed by both the energy dissipation effect and the local 

resonance mechanism.  
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Figure 5. Complex band structure of the graded supercell structure in the case of R = 200 Ω: (a) 

the dimensionless wavenumber; (b) the imaginary part of dimensionless wave propagation 

constant, i.e., the attenuation factor. A continuous attenuation factor appears due to the electrical 

damping. 

Figure 6(a) depicts the evolution of the attenuation factor of the graded piezo-meta-beam in the 

heatmap when R varies from 1 Ω to 500 Ω. When R is minor, multiple dark blue areas alternate 

with dark red areas, indicating that the attenuation region is discontinuous. As R increases, the 

dark blue areas vanish, and a continuous attenuation region forms. For example, the smallest 

attenuation factor in the green highlighted area is more than 0.1 when R > 174.5 Ω. The bandgap 

bounds of the graded piezo-meta-beam estimated by Eq. (11) are also marked in Figure 6(a), 

showing a good agreement with the attenuation factor heatmap result at a large R. In addition, the 

attenuation factors in the original bandgap regions decrease when R increases because the 

electrical damping weakens the local resonance effect.   

Based on the band structure analyses, we have demonstrated the possibility of realizing 

broadband vibration attenuation with the proposed graded piezo-meta-beam. For a finitely long 

metamaterial beam, Figure 6(b) shows the transmittances of the graded piezo-meta-beam when 

R = 10 Ω and R = 200 Ω. As the resistance increases, the resonant peaks in the flat passbands 
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(marked by circles) are significantly suppressed. At the same time, a larger resistance also 

weakens the attenuation ability in the bandgaps, i.e., the attenuation valleys become shallower. 

This is in good agreement with the discussion on the complex band structure. Although the 

electrical damping effect has suppressed the resonant peaks, the attenuation regions in the form 

of valleys remain discontinuous. This may attribute to the mistuned spatial variation (δ = 2 mm). 

As discussed before, the electrical parameters of the shunted piezoelectric transducers with 

varying lengths are different, which results in an array of discrete attenuation zones. If the spatial 

variation δ is over-tuned, the discrete bandgaps generated by those unit cells cannot overlap, and 

the vibration attenuation zones will be too dispersed in the frequency spectrum. Hence, it is 

necessary to investigate the tuning characteristics of the vibration attenuation region with the 

change of δ. Hereafter, we fix the resistance R = 200 Ω and will discuss the effect of δ on the 

vibration attenuation region in the following section. 

 

Figure 6. (a) Evolution of the attenuation factor heatmap of the graded supercell structure with 

varying load resistance (1Ω - 500Ω); (b) Comparison of tip transmittances of the finitely long 

graded piezo-meta-beam in the cases of R = 10 Ω and R = 200 Ω.  

3.2 Transmittance Evolution 

With the same parameters, Figure 7(a) shows the transmittance heatmap of the graded piezo-
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meta-beam as the function of the spatial variation δ. Note that δ = 0 indicates the conventional 

uniform piezo-meta-beam. The areas where the transmittance is less than 0 dB refer to the 

attenuation zones. As shown in Figure 7(a), the transmittance heatmap is nearly symmetrical 

with respect to δ = 0. It can also be observed that the attenuation capability is sensitive to δ. Even 

a small variation (δ = 0.2 mm, for example) may significantly decrease the attenuation capability. 

By increasing |δ|, the attenuation zone becomes wider, extending to the higher and lower 

frequency ranges. Notably, when δ > 1.04 mm and δ < -0.86, multiple fractured attenuation 

regions appear. As mentioned in the previous subsection, these fractured attenuation regions 

attribute to the overdispersion of the attenuation regions generated by the piezoelectric elements 

in the frequency spectrum. To show more details, Figure 7(b) displays the transmittance profiles 

of the graded piezo-meta-beam at several values of δ. In other words, the curves in Figure 7(b) 

are the slice views of Figure 7(a). The color-filled region refers to the dominant attenuation zone, 

i.e., the widest continuous valley. It is further confirmed that increasing |δ| leads to extending the 

attenuation zone, while excessively increasing δ will split the attenuation zone into pieces.  
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Figure 7. (a) Heatmap of the evolution of the transmittance of the graded piezo-meta-beam 

with varying spatial variation δ; (b) Transmittances of the graded piezo-meta-beam with a few 

specific δ, where the color-filled regions are the dominant attenuation zones. 

4. Experimental Study 

4.1 Experimental Setup 

The left-hand side in Figure 8(a) shows the fabricated graded piezo-meta-beam. A uniform piezo-

meta-beam, as shown on the right-hand side of Figure 8(a), is also fabricated for comparison. 

These piezo-meta-beams are made of aluminum alloy and contain 9 bimorph PZT-5H pairs. One 

end of the beam is clamped on a 3D-printed fixture. Figure 9 shows the experimental setup for 

conducting the vibration test. The entire vibration test system consists of two permanent magnet 

shakers (Labworks, model: ET-132-203), a shaker amplifier (SignalForce, model: PA30E), 

several accelerometers (PCB piezotronics, model: 352C22), a vibration controller 

(VibrationResearch, model: VR9500), and a DC power supply (ESCORT, model: EPS-3060TD). 

The excitation is applied at the clamped end of the piezo-meta-beams. One accelerometer is 

attached to each end of the piezo-meta-beam to measure the frequency response. The input signal 

is controlled by VibrationVIEW 2021 (the vibration controller software), and the vibration data 

are recorded by the vibration controller. Two types of vibration tests, i.e., harmonic and random 
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excitation tests, are performed to evaluate the vibration attenuation performance of the developed 

graded piezo-meta-beam in comparison with its uniform counterpart. 

 

Figure 8. (a) Prototyped piezo-meta-beams; (b) Diagram of the synthetic inductor circuit. 

 

Figure 9. Experimental setup of vibration tests. 
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4.2 Result Discussion 

For the graded piezo-meta-beam, a spatial variation δ = 1 mm is chosen, which means the PZT 

patches are of different lengths 36mm, 37 mm,…, 43 mm, and 44 mm. For the uniform piezo-

meta-beam, PZT patches of the same length 40 mm (i.e., δ = 0 mm) are used. The first beam 

segment without PZT coverage near the clamped end is slightly longer than the segments 

elsewhere to ensure that the fixture will not damage the nearest PZT patch. The internal 

capacitances of the above two groups of bimorph PZT pairs adhered to the graded and uniform 

piezo-meta-beams are measured by a multimeter, and their values are listed in Table 2. It is worth 

noting that the capacitances of the PZT pairs in the uniform piezo-meta-beam are not perfectly 

identical due to the machining error. The subscript j = 1, 2, … , 9 denotes the index of the PZT 

pair from the clamped end to the free end. It can be seen that the capacitance varies with the 

change of the PZT patch length. All the PZT patches are adhered to the host beam using 

electrically insulative epoxy. The other geometric and material parameters of the physical 

prototype tested in the experiment are the same as those listed in Table 1. 

Table 2. Capacitances of PZT pairs in the experiment (the unit is nF). 

 Cp,1 Cp,2 Cp,3 Cp,4 Cp,5 Cp,6 Cp,7 Cp,8 Cp,9 

Graded piezo-meta-beam  13.06  13.35 13.78 14.36 15.27 15.86 16.43 16.89 17.73 

Uniform piezo-meta-beam 15.55 15.49 15.42 15.56 15.47 15.56 15.70 15.38 15.49 

Since the inherent capacitance of the PZT patch is small, a large inductor with a relatively small 

parasitic resistance is desired to generate the resonance around the expected frequency while 

avoiding excessive resistance to weaken the resonance effect. In this experiment, the inductors 

are realized using Antoniou’s synthetic inductor circuits [51], as depicted in Figure 8(b). Based 

on the characteristics of the op-amp, the equivalent inductance can be calculated as  
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LM358 op-amps with an operating range up to ± 32 V are used as amplifiers. R4 is a variable 

resistor ranging from 0 to 50 kΩ. The other electrical parameters used in the synthetic circuit are 

listed in Table 3.  

Table 3. Circuital parameter of the synthetic inductor.  

 Symbol  Value/Model 

Capacitor C1 100 nF 

Resistor R1 10 kΩ 

Resistor R2 2.2 kΩ 

Resistor R3 10 kΩ 

Resistor R4 50 kΩ (variable) 

Op-amp  LM358 

Note that there is no need to add any auxiliary resistor to flatten the undesired resonance peaks 

since a parasitic resistance unavoidably exists in the synthetic circuit due to the non-idealities of 

the practical op-amps [52]. The synthetic inductor circuit can be regarded as an in-series 

connected R-L circuit. However, the parasitic resistance cannot be measured directly because the 

synthetic inductor circuit is an active circuit. Alternatively, a fully charged capacitor Cf  = 16 nF 

with an initial voltage of Uc = 11V is connected to the synthetic inductor circuit. According to the 

R-L-C oscillation, the voltage Vc across the capacitor will decay exponentially with respect to 

time t, which can be calculated as  

 /1

2

t

c cV U e −=   (27) 

where 𝜏 = 2L/Rp is the time constant, and Rp is the series resistance. Figure 10(a) shows the 

measured voltage Vc across the capacitor versus time. The equivalent impedance L is set to  

39.58 H, corresponding to the LC resonant frequency of fLC = 200 Hz. The theoretical Vc based 
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on Eq. (27) when Rp = 320 Ω is also plotted in Figure 10(a). The result matches the measured 

one well, implying that the parasitic resistance is around 320 Ω. Then, multiple inductances L, 

corresponding to fLC = 300, 400, …, 700 Hz, are considered. By repeating the above procedure, 

one can estimate their corresponding parasitic resistances. The relationship between the parasitic 

resistance and the equivalent inductance is shown in Figure 10(b). It can be found that the 

parasitic resistance increases with the increase of the equivalent inductance.  

 

Figure 10. (a) Comparison of the measured and theoretical voltage Vc of the R-L-C circuit with 

L = 39.58 H, Cf  = 16 nF, and Rp = 320 Ω. The theoretical result matches the measured one well 

when Rp = 320 Ω, implying that the parasitic resistance is around 320 Ω; (b) The estimated 

parasitic resistances for different equivalent inductances L = 3.23 H, 4.40 H, 6.33 H, 9.89 H, 

17.59 H, 39.58 H. It is noted that the parasitic resistance increases with the increase of L. 

In the experiment, a harmonic sweep excitation ranging from 200 Hz to 700 Hz is generated with 

a sweep rate of 2 Hz/sec. Figure 11 compares the measured transmittances of the graded and 

uniform piezo-meta-beams shunted to the same synthetic circuits for validating the superiority of 

the graded design. For the synthetic circuits used in experiments, three different equivalent 

inductances L, i.e., L1 = 23.52 H, L2 = 10.97 H, L3 = 5.64 H, are considered. The transmittances 

of the two piezo-meta-beams under the short circuit condition are also provided (dashed curves). 

The attenuation regions (i.e., transmittance < 0 dB) of the graded and uniform piezo-meta-beam 
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are shaded in pink and blue, respectively. It can be seen that evident valleys are produced, and  

 

Figure 11. Comparison of the measured transmittances of the graded and uniform piezo-meta-

beams with different synthetic inductors: (a) L1 = 23.52 H, (b) L2 = 10.97 H, and (c) L3 = 5.64 

H. The measured transmittances when PZT patches are in short circuits are superposed on the 

plots. The pink and blue shaded areas indicate the vibration attenuation zones of the graded 

piezo-meta-beam and uniform piezo-meta-beam, respectively. 

the modal peaks are significantly suppressed. In general, the graded piezo-meta-beam opens 

broader attenuation zones than the uniform one, while the attenuation strength is weakened. The 

attenuation zones of the graded piezo-meta-beams shunted to L1, L2, and L3 are, respectively, 258 

Hz - 279 Hz, 377 Hz - 419 Hz, and 518 Hz - 590 Hz. Compared to the attenuation zones in the 

uniform piezo-meta-beam, i.e., 261 Hz - 276 Hz, 387 Hz - 411 Hz, and 542 Hz - 582 Hz, the 

bandwidth is enlarged by 40%, 75%, and 80%, respectively. One can also find that it becomes 

more difficult to broaden the low-frequency attenuation region by using grading PZT patches 

(e.g., Figure 11(a)). Low-frequency vibration suppression and noise reduction are well-known 
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challenging problems. Metamaterials, though with extraordinary properties, also cannot break 

this law. Many previous studies demonstrated that the ability of conventional uniform 

metamaterials became evidently weaker in suppressing low-frequency acoustic/elastic waves [53, 

54] (i.e., narrower bandgap and weaker attenuation strength). The bandgap of a graded 

piezoelectric metamaterial is split into discrete attenuation regions due to the “graded” design. 

Just like conventional metamaterials, the discrete bandgaps are always weaker at low frequencies 

than at high frequencies. That is why it is more difficult to counteract the mode peaks and expand 

the attenuation region at low frequencies. Moreover, the multiple resonant peaks of the undamped 

graded metamaterial system discussed in Section 3.1 disappeared, implying that the wave 

localization in the non-uniform piezoelectric metamaterial is difficult to achieve due to the 

inevitable electrical damping in the actual shunt circuits.  

Random vibration tests are also carried out to demonstrate the broadband vibration suppression 

performance of the graded piezo-meta-beam. For brevity, only the case of L3 = 5.64 H is selected 

for demonstration. A band-limited white noise excitation is generated with a customized power 

spectral density (PSD) profile ranging from 480 Hz to 660 Hz, which encompasses a modal peak 

of the tested beam in short circuit conditions. The PSD is set to be a constant value of 0.001 G2/Hz, 

where G is the gravitational acceleration. Figure 12 compares the PSDs of the graded and uniform 

piezo-meta-beams measured at the free end, which shows a similar trend to the results in Figure 

11(c). Figure 13(a) shows the evolution of the root mean square (RMS) accelerations at the beam 

tips of the two piezo-meta-beams calculated at the free end during 50 seconds of excitation. After 

a period of time (~10 seconds) for the shaker to reach the predetermined acceleration amplitude, 

the RMS accelerations at the beam tips remain nearly constant. Figure 13(a) shows that the RMS 
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acceleration is reduced from 0.66 G to 0.53 G for the uniform piezo-meta-beam when the 

piezoelectric shunt circuits are switched on. The improvement in the graded piezo-meta-beam is 

more significant: the RMS acceleration drops from 0.71 G to 0.38 G. The time-domain 

acceleration signals at the beam tips of the piezo-meta-beams are plotted in Figure 13(b). The 

results further confirm that the graded design can offer a better broadband vibration attenuation 

performance than the uniform counterpart. It is worth mentioning that the theoretical model in 

Section 2 is phenomenologically and qualitatively, but not quantitatively, validated here. 

Although the one-dimensional (1D) simplified model of the piezoelectric material has been 

widely adopted, one defect is yet to be overcome: the predicted bandgap based on the 1D 

piezoelectric model is always lower than the experimental result. The same problem has been 

reported in other literature [22, 55]. The possible reason for this is that the internal capacitance of 

the piezoelectric material is misestimated by the 1D model. Refined modeling of 3D piezoelectric 

metamaterials and quantitative comparison with experimental results can be a prospective work. 

 

Figure 12. PSDs of the beam tips of the graded and uniform piezo-meta-beams under the band-

limited white noise excitation (480 Hz to 660 Hz) with a constant PSD of 0.001 G2/Hz. 
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Figure 13. (a) Root mean square (RMS) accelerations at the beam tips of the graded and 

uniform piezo-meta-beams under the band-limited white noise excitation (480 Hz to 660 Hz) 

with a constant PSD of 0.001 G2/Hz. (b) Acceleration signal of the graded and uniform piezo-

meta-beams at the tip in the time domain. 

5. Conclusions 

This paper presented analytical and experimental studies of a metamaterial beam covered by an 

array of graded piezoelectric transducers for broadband vibration attenuation. We considered a 

graded supercell and employed the transfer matrix method to solve the dispersion relation. We 

also derived the transmittance of the graded piezo-meta-beam with a clamped-free boundary 

condition. Both the band structure and transmittance analysis results indicated that the vibration 

attenuation zone was widened after introducing length grading on piezoelectric patches but split 

into pieces by resonant peaks. By leveraging the electrical damping effect, it was shown that the 

resonant peaks located between those dispersed attenuation zones were damped out, leading to 

the formation of a continuous attenuation zone for broadband vibration mitigation. However, a 

parametric study revealed that the bandgap is sensitive to the length grading of the piezoelectric 

patches. An over-tuned length grading could lead to excessively dispersed attenuation zones and 

much weakened attenuation capability. Experiments were performed to evaluate the vibration 
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attenuation performance of the graded piezo-meta-beam. The harmonic sweep test confirmed that 

the attenuation zone generated by the “graded” design could be enlarged by as much as 80%. A 

random excitation test was also conducted. The results showed that given the power spectral 

density (PSD) of the random input excitation was 0.001 G2/Hz, the RMS acceleration amplitude 

at the tip of the graded piezo-meta-beam could be suppressed to 0.38 G, which was much smaller 

than 0.52 G of the uniform counterpart. 

The proposed graded metamaterial beam is still a laboratory model. Additional tests under various 

load conditions will be carried out to better understand its limit for practical applications. In 

addition, one can hopefully further enhance its vibration attenuation capacity by including 

multiple graded supercells and/or by incorporating more advanced shunt circuits.  
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